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ABSTRACT 

This paper presents the different advanced techniques to detect and classify plant leaf.The crop disease causes 

losses in Production and economics in agricultural field. Generally through the naked eyes the observations 

taken by the Experts ancient time for the detection and identification of crop diseases.  But for this the 

continuous monitoring is required by the Experts and It is too expensive in large fields.  So many under 

developed countries in agricultural area, farmer needs to take lots of efforts. Simultaneously it will be so 

expensive and time consuming also for both experts and farmers. Early information of plant health and disease 

detection can control of diseases through proper management such as vector control such as pesticide 

applications.  

The present review describes the technologies used in monitoring health and diseases in plants under field 

conditions.These technologies include spectroscopic and imaging based, and volatile profiling-based plant 

disease detection methods. The paper compares the benefits and limitations of these methods. 
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I.INTRODUCTION 

The crop disease causes losses in Production and economics in agricultural field It is estimated that the crop 

losses due to plant pathogens in United Stated result in about 33 billion dollars every year. Of this, about 65% 

(21 billion dollars) could be attributed to non-native plant pathogens (Pimentel et al., 2005). Some of the 

diseases caused by introduced pathogenic species are chestnut blight fungus, Dutch elm disease, and huanglong 

bing citrus disease (Pimentel et al., 2005[1]; Li et al., 2006[2]). The bacterial, fungal, and viral infections, along 

with infestations by insects result in plant diseases and damage. There are about 50,000 parasitic and non-

parasitic plant diseases of plants in United States (Pimentel et al., 2005). Upon infection, a plant develops 

symptoms that appear on different parts of the plants causing  a significant agronomic impact (Lopez et 

al.,2003[3]).many 

such microbial diseases with time spread over a larger area in groves and plantations through accidental 

introduction of vectors or through infected plant materials.This paper describes an approach taken to detect plant 

diseses.The approach involves the application of diseases. The approach involves the application of 

spectroscopic and imaging techniques for disease detection, This approach was selected for a fast, reliable, and 

real-time plant disease monitoring for disease control and management. The early detection of plant diseases 



 

892 | P a g e  

 

could be a valuable source of information for executing proper pest management strategies and disease control 

measures to prevent the  development and the spread of diseases. 

 

II. SPECTROSCOPIC AND IMAGING TECHNIQUES FOR DISEASE   DETECTION 

Recent developments in agricultural technology demands for an automated non-destructive methods of plant 

disease detection. The plant disease detection tool should be rapid, specific to a particular disease, and sensitive 

for detection at the early onset of the symptoms (López et al., 2003). The spectroscopic and imaging techniques 

are used to detect diseases and stress due to various factors, in plants and trees. Some the methods of 

spectroscopic and imaging techniques are:fluorescence imaging (Bravo et al., 2004[4]; Moshou et al.,2005[5]; 

chaerle et al.,2007[6]),  multispectral  or hyper  spectral imaging (Moshou et al., 2004[7]; Shafri and 

Hamdan,2009[8];Qin et al.,2009[9]), infrared spectroscopy (Spinelli et al. 2006[10]Purecel et al. 2009[11]), 

fluorescence 

Spectroscopy (Marcassa et al.,2006[12]; Belasque et al.,2008 [13]; Lins et al.,2009[14]) Visible/multiband 

spectroscop (Yang et al., 2007[15]; Delalieux et al., 2007[16]; Chen et al., 2008.[17])  Spectroscopic technology 

has been successfully applied for plant stress detection such as water-stress detection and nutrient-stress 

detection. Tables 1 and 2 summarize the different plant disease detection techniques using spectroscopic and 

imaging.  

 

2.1.Fluorescence spectroscopy 

Fluorescence spectroscopy is a spectroscopic method, after excitation of a beam of light the fluorescence from 

the object  is measured. Belasque et al.(2008)[18] described fluorescence spect- roscopy to detect stress caused 

by citrus canker (bacterial disease caused by Xanthomonas citri–X. axonopodis pv. citri) and mechanical injury. 

Here a portable fluorescence spectroscopy system was taken to the greenhouse and the measurement probe was 

placed 2mmabove the leaf (attached to greenhouse plants) for collecting data from different samples during the 

period of study (60 days). The spectral data were further processed and analyzed in the laboratory. A 532nm 

10mW excitation laser was used for excitation and ratios between fluorescence at different wavelengths were 

employed to monitor the stress caused by bacterial infection. The samples of leaves collected from the field 

(detached leaves) as well as leaves from greenhouse plants (attached leaves) were analyzed using the system. 

The three ratios used were: (i) ratio between fluorescence intensity at 452 and 685 nm, (ii) ratio between 

fluorescence intensity at 452nm and 735 nm, and (iii) ratio between fluorescence intensity at 685nm and 735 

nm. Fluorescence of citrus leaves was monitored for 60 days under four different conditions: leaves with no 

stress, leaves with mechanical stress, leaves with disease.The studies reported the potential of fluorescence 

spectroscopy for disease detection and discrimination between the mechanical and diseased stress. A similar 

approach was taken to detect water stress and differentiate citrus canker leaves from variegated chlorosis leaves 

(Marcassa et al., 2006[12]). The above studies could classify healthy from citrus canker-affected leaves, but 

were unable to identify water stress and distinguish between variegated chlorosis and citrus canker-infected 

leaves. The authors did not yet present any statistical analysis to evaluate the ability of the technique to 

discriminate or classify different plant conditions. 
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Methods such as principal component analysis (PCA), discriminant analysis, and neural network-based 

classification algorithms can be applied to analyze the results obtained from fluorescence spectroscopy. Also 

parallel factor analysis, cluster analysis, partial least square (PLS) regression, and Fischer’s linear discriminant 

analysis (LDA) can be applied for classifying fluorescent spectrometric data having two or more classes 

(Guimet, 2005[19]). 

 

2.2. Visible and infrared spectroscopy 

The detection of plant diseases for cost-effective, a rapid and non-destructive method is nothing but visible and  

infrared spectroscopy.This technology used for varied applications(Ramon et al.,2002[20]:Delwiche and 

Graybosch 2002  [21]; Pontius et al., 2005[22]; Gomez et al., 2006[23]; Zhang et al., 2008[24]; Guo et al., 

2009[25]; Sundaram et al., 2009[26]). The visible and infrared regions of the electromagnetic spectra provide 

the maximum information on the  physiological stress levels in the plants (Muhammed, 2002, [27]; Xu et 

al.,2007[28]) so some of these wavebands specific to a disease can be used to detect plant diseases (West et al., 

2003[29]), even before the symptoms are visible. Most of the times, combination of visible spectroscopy and 

infrared spectroscopy is used for disease detection in plants (Malthus and Madeira, 1993[30]; Bravo et 

al.,2003[29];Huang et al.,2004[31];Larsolle and Muhammed, 2007[32]). 

Naidu et al. (2009) [33] identified viral infection by using leaf spectral reflectance under field conditions in 

grapevines (Vitis vinifera L.) that cause grapevine leaf roll disease. A portable spectrometer was used to collect 

reflectance data from each leaf of the plant using a plant-probe attachment device having a leaf clip. In addition 

to the green, near infrared, and mid infrared region of the spectra, vegetative indices were used to assess the 

applicability of spectral reflectance in identifying the disease. Discriminate analysis was performed to classify 

the infected leaves with and without symptoms with that of non-infected leaves. The different categories of 

leaves could be clearly differentiated with improved accuracies when both the vegetative indices and individual 

reflectance bands were used. A maximum of 75%  accuracy was achieved in the study. Huang and Apan 

(2006)[34] detected Sclerotinia rot disease  in celery, hyperspectral data collected using portable spectrometer 

under field conditions. PLS regression analysis was performed to analyze the spectral reflectance data. The first 

and second derivatives were estimated to test their effectiveness in reducing the root mean square error during 

the validation of the developed model. The raw data-based model produced lower root mean square errors than 

the first and second derivatives. The authors also stated that the reflectance in the visible and infrared range 

from 400 to 1300nm were sufficient in acquiring similar results as that of entire spectra (400–2500 nm).  

Simone Graeff et al. (2006) [35] identified powdery mildew in wheat. Leaf reflectance was measured with a 

digital imager (Leica S1 Pro, Leica, Germany) under controlled light conditions in various wavelength ranges 

covering the visible and the near-infrared spectra (380 -1300 nm). Leaf scans were evaluated by means of 

L*a*b*-color system.  The reflectance image at  490780 nm (r2 = 0.69), 510780nm (r2 = 0.74), 5161300nm (r2 = 

0.62) and 5401300 nm (r2 = 0.60)  were acquired leaf spectra for evaluation. Among the evaluated spectra the 

range of 490780nm showed most sensitive response to damage caused by powdery mildew and take-all 

infestation. 
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2.3. Fluorescence imaging 

Fluorescence imaging is an advancement of fluorescence spectroscopy, where fluorescence images (rather than 

single spectra) are obtained using a camera. A xenon or halogen lamp is used as a UV light source for 

fluorescence excitation, and the fluorescence at specific wavelengths are recorded using the charge coupled 

device (CCD)-based camera system (Bravo et al., 2004[36]; Lenk and Buschmann, 2006[37]; Chaerle and Lenk 

et al., 2007[38]). 

Bravo et al. (2004)[36] detected  yellow rust in winter wheat,for this  fluorescence used. They acquired two 

fluorescence images: a background image without the xenon lamp source and a fluorescence image with the 

xenon lamp source during the experiments. The fluorescence measured at certain frequency such as 450, 550, 

690, and 740 nm. The authors stated that the difference between the fluorescence at 550 and 690nmwere higher 

in the diseased portion of the leaves, while it was very low for healthy regions of the leaves. Quadratic 

discriminant analysis (QDA) used for analysis. QDA classified healthy and diseased plants with an accuracy of 

71% and 96%, respectively.  

Moshou et al.(2005)[39] stated combination of hyperspectral  reflectance and multispectral fluorescence 

imaging through sensor fusion for the detection of yellow rust  disease of winter wheat. The hyperspectral 

images were taken  under ambient condition in winter wheat plots and  fluorescence imaging  under UV 

excitation. The classification accuracy due to QDA ,improved from 71–90% to 97%.when the self-organizing 

map (SOM)-based neural network used for  classification of the diseased plants and healthy plants, The 

classification accuracy increased to 98.7% and 99.4% respectively. 

2.4. Hyperspectral imaging 

The imaging techniques are an improvement over Spectroscopic techniques as these methods acquire spectral  

information over a larger area and provide three-dimensional spectral information in the form of images. 

In recent years, hyperspectral imaging is gaining considerable interest for its application in precision agriculture 

(Okamoto et al.,2009)[40]. In the hyperspectral imaging, the spectral reflectance of each pixel is acquired for a 

range of wavelengths in the electromagnetic spectra. The wavelengths may include the visible and infrared 

regions of the electromagnetic spectra. The hyperspectral imaging is similar to multispectral imaging, the 

difference being a broader range of wavelengths (more number of spectral bands) being scanned for each pixel 

in the hyperspectral imaging. The resulting information is a set of pixel values (intensity of the reflectance) at 

each wavelength of the spectra in the form of an image. (Sindhuja Sankaran et al.,2010)[41].  

Dimitrios Moshou et al. (2004) [42]used to detect yellow rust in wheat using spectral reflectance between 

healthy and diseased wheat plants In-field spectral images were taken with a spectrograph mounted at spray 

boom level. For detection purpose Self-Organizing Maps and for classification neural networks, so classification 

performance increased from 95% to more than 99% using a total of 5137. The reflectance image at 463 and 895 

nm were acquired leaf spectra for evaluation Experiments were performed at Rothamsted Research, UK. Winter 

wheat was sown on October 6th, 2000 with row spacing 12.5 cm and at a rate of 350 seeds/m2. Cultivar 

‘Madrigal’was chosen, as itwas highly susceptible to the race of yellow rust to be inoculated, but 

moderatelyresistant to most  other diseases.Six plots,each 9m 10m (surrounded by 3m guard rows), inoculated 
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with yellow rust but not treated with any fungicide, were used to study disease development and detection, while 

similar uninoculated plots provided healthy crop canopies for comparison 

A-K. Mahlein et al. (2006)[43] detected the three leaf diseases Cercospora leaf spot, sugar beet rust and 

powdery mildew of Sugar beet plants. Hyperspectral reflectance  of healthy and diseased sugar beet leaves were 

assessed with a non-imaging spectroradiometer . The normalized differences from 450 to 950 nm, describing the 

impact of a disease on sugar beet leaves were extracted from the data-set using the RELIEF-F algorithm. To 

develop hyperspectral indices for the  detection of sugar beet diseases the best weighted combination of a single 

wavelength and a normalized  wavelength difference was exhaustively searched testing all possible 

combinations. The optimized disease indices were tested for their ability to detect and to classify healthy and 

diseased sugar beet leaves. The classification accuracy of healthy sugar beet leaves and leaves, infected with 

Cercospora leaf spot, sugar beet rust and powdery mildew was89%, 92%, 87%, 85%, respectively 

Hamed Hamid Muhammed.(2005)[44] applied nearest neighbor classifier to classify the new data against the 

reference data. This paper recognized Fungal Disease Severity  in Wheat. The objective of this work was to use 

remotely sensed hyperspectral reflectance data to discriminate between healthy and diseased plants in a spring 

wheat crop suffering from fungal infestation, and to determine plant-cover damage levels in the diseased plants. 

The proposed method was applied to hyperspectral crop reflectance data, of 164 spectral bands in the spectral 

region 360–900 nm. 

T.Rumpfa et al.,(2010) identified sugar beet diseases. This was estimated by Support Vector Machines and 

spectral vegetation indices. Hyperspectral data were recorded from healthy leaves and leaves inoculated with the 

pathogens Cercospora beticola, Uromyces betae or Erysiphe betae causing Cercospora leaf spot, sugar beet rust 

and powdery mildew, respectively for a period of 21 days after inoculation. Nine spectral vegetation indices, 

related to physiological parameters were used as features for an automatic classification. Early differentiation 

between healthy and inoculated plants as well as among specific diseases can be achieved by a Support Vector 

Machine with a radial basis function as kernel.The classification accuracy was up to 97%.  Remote Distinction 

of A Noxious Weed (Musk Thistle: Carduus Nutans) Using Airborne Hyperspectral Imagery and the Support 

Vector Machine Classifier ( Mustafa Mirik et al.(2013)[46]) designed to explore the ability of hyperspectral 

imagery for mapping infestation of musk thistle (Carduus nutans) on a native grassland during the preflowering 

stage in mid-April and during the peak flowering stage in mid-June using the support vector machine classifier. 

Spectral reflectance for plant species in the visible and NIR regions were tested for statistical significance using 

paired t-tests assuming unequal variance at α = 0.05 The classification accuracy were 79% and 

91%.respectively. 

New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases(Wenjiang Huang et 

al.2014)[47] developed new spectral indices (NSIs) for identifying different diseases on crops. Three different 

pests (powdery mildew, yellow rust, and aphids) in winter wheat were used in this study. The new optimized 

spectral indices were derived from a weighted combination of a single band and a normalized wavelength 

difference of two bands. The most and least relevant wavelengths for different diseases were first extracted from 

leaf spectral data using the RELIEF-F algorithm. Reflectance of a single band extracted from the most relevant 

wavelengths and the normalized wavelength difference from all possible combinations of the most and least 
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relevant wavelengths were used to form the optimized spectral indices. The classification accuracies of these 

new indices for healthy leaves and leaves infected with powdery mildew, yellow rust, and aphids were 86.5%, 

85.2%, 91.6%, and 93.5%, respectively. Wenjiang Huang et al.(2007)[48] evaluated accuracy of the 

spectro-optical, photochemical reflectance index (PRI) for quantifying the disease index (DI) of 

yellow rust (Biotroph Puccinia striiformis) in wheat (Triticum aestivum L.), and its applicability in the 

detection of the disease using hyperspectral imagery. The experiment was conducted at Beijing 

Xiaotangshan Precision Agriculture Experimental Base, in Changping district,Beiing(40_10.60 

N,116_26:30 E) for the 2001-2002 and 2002-2003 growing seasons.Experimental data from 2001 to 

2002 were used to establish the statistical models, and the data for 2002–2003 were used to validate 

the models developed. The field site had a warm temperate climate, with a mean annual rainfall of 

507.7 mm and a mean annual temperate of 13_C. In this region a significant proportion of growing 

days are cloudless during April to June. The soil at the sites is a silt-clay loam. The average topsoil 

nutrient status (0–0.30 m depth) was as follows: organic matter 1.42–1.48%, total nitrogen 0.08–

0.10%, alkali-hydrolysis nitrogen 58.6–68.0 mg kg–1, available phosphorus 20.1–55.4 mg kg–1, and 

rapidly available potassium 117.6–129.1 mg kg–1. 

R. Devadas et al.(2009)[49] evaluated ten spectral vegetation indices for identifying rust infection in individual 

wheat leaves. Wheat (Triticum aestivum L.) plants were grown in controlled conditions in the Cereal Rust 

Laboratory at the University of Sydney, Cobbitty, New South Wales, Australia. All seedlings were inoculated at 

the 2–3 leaf stage (Zadok growth stage Z12–14) (Zadoks et al. 1974)[50] by suspending urediospores of the 

three rust species separately in Shellsol TK oil and spraying onto selected seedlings using an ultra low volume 

spray unit. A single, second-emerged leaf was targeted for laboratory leaf spectral analysis from individual 

plants at the early tillering stage of development (Zadok growth stage Z21–23). Infected leaves had 50–90% of 

the leaf area covered in rust pustules whilst the healthy leaves (not sprayed) had no observable pustules. 

Individual leaf spectral reflectance data were collected using the spectrometer. Thirty leaf samples each were 

collected, one from each plant, from healthy plants and those infected with each of the rust species. Vegetation 

indices (VIs) were calculated for each recorded spectrum. ANOVA was used to test healthy and diseased 

samples. Levene’s test was used to confirm homogeneity of error variances, the LSD was used to compare 

means. 

                               Table 1 Examples of studies on plant disease detection using spectroscopic techniques. 

Plant Disease/ 

Damage 

Statistical Methods Optimum spectral 

range 

Reference 

Citrus Citrus canker -- 452, 685 and 735nm Belasque et al. 

(2008) 

 

Rice Infested with brown 

planthopper 

  - 737–925nm Yang and Cheng 

(2001) 

Wheat Powdery mildew and Analysis of variance, 490nm to780nm, 510nm Graeff et al. (2006) 
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take-all disease correlation and 

regression analysis 

to780nm , 516nm 

to1300nm 

and 540nm to1300 nm 

Rice Brown planthopper 

and leaffolder 

infestation 

Linear regression 

models 

426nm Yang et al. (2007) 

Kiwifruit Gray mold, Sclerotinia 

rot 

Principal component 

analysis 

- Costa et al. (2007) 

Wheat Yellow rust Regression - Huang et al. (2007) 

Tomato Leaf miner damage  800 to 1100 nm, 

1450 and 1900nm 

Xu et al. (2007) 

Grapevine Grapevine leafroll 

disease 

Discriminant analysis 752, 684 and 970nm Naidu et al. (2009) 

 

Table 2  Examples of studies on plant disease detection using imaging techniques. 

Plant Disease/ 

Damage 

Statistical Methods Optimum spectral 

range 

Reference 

Wheat Scab (Fusarium head 

blight) 

Step discrimination 

and 

discriminant 

analysis 

568, 715nm (550, 605, 

623, 

660, 697 and 733 nm) 

Delwiche and 

Kim (2000) 

 

 

 

 

Tomato Late blight disease Minimum noise 

fraction 

transformation and 

spectral 

angle mapping-

based 

classification 

700–750 nm, 750–930 

nm, 

950–1,030 nm, and 

1,040–1,130nm 

 

 

 

 

Zhang et al. 

(2003, 2005) 

Wheat Yellow rust, nutrient 

deficiency 

Self-organizing map 

neural 

network, quadratic 

discriminant 

analysis 

680, 725 and 750nm Moshou et al. 

(2005, 2006) 
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Wheat Yellow rust Regression analysis - Huang et al. 

(2007) 

Grapefruit 

(fruit) 

Citrus canker Principal component 

analysis 

553, 677, 718 and 

858nm 

Qin et al. (2008) 
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